

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

IR SPECTRA OF Zn PHTHALOCYANINE AND Zn PHTHALOCYANINE- d_{16} AND THEIR INTERPRETATION ON THE BASIS OF NORMAL COORDINATE ANALYSIS

L. L. Gladkov^a; S. F. Shkirman^b; N. I. Sushko^c; V. K. Konstantinova^d; N. A. Sokolov^d; K. N. Solovyov^b

^a Higher College of Communication, Minsk, Belarus ^b Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Minsk, Belarus ^c B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus ^d Belarusian State University, Minsk, Belarus

Online publication date: 31 December 2001

To cite this Article Gladkov, L. L. , Shkirman, S. F. , Sushko, N. I. , Konstantinova, V. K. , Sokolov, N. A. and Solovyov, K. N.(2001) 'IR SPECTRA OF Zn PHTHALOCYANINE AND Zn PHTHALOCYANINE- d_{16} AND THEIR INTERPRETATION ON THE BASIS OF NORMAL COORDINATE ANALYSIS', Spectroscopy Letters, 34: 6, 709 – 719

To link to this Article: DOI: 10.1081/SL-100107893

URL: <http://dx.doi.org/10.1081/SL-100107893>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**IR SPECTRA OF Zn PHTHALOCYANINE
AND Zn PHTHALOCYANINE-*d*₁₆ AND
THEIR INTERPRETATION ON THE BASIS
OF NORMAL COORDINATE ANALYSIS**

**L. L. Gladkov,¹ S. F. Shkirman,² N. I. Sushko,³
V. K. Konstantinova,⁴ N. A. Sokolov,⁴
and K. N. Solovyov²**

¹Higher College of Communication, 8 Staroborisovsky
Trakt, Building 2, 220114 Minsk, Belarus

²Institute of Molecular and Atomic Physics, and

³B.I. Stepanov Institute of Physics, National Academy
of Sciences of Belarus, 70 F. Skaryna Ave.,
220072 Minsk, Belarus

⁴Belarusian State University, 4 F. Skaryna Ave.,
220050 Minsk, Belarus

ABSTRACT

IR spectrum of perdeuterated Zn phthalocyanine (ZnPc-*d*₁₆) has been obtained and compared to that of non-deuterated ZnPc. For both cases normal coordinate analysis has been carried out, and the isotopic shifts on deuteration have been satisfactorily described. The form of the in-plane modes of the E_u symmetry type has been characterized by potential energy distribution.

Key Words: IR spectrum; Normal coordinate analysis; Zn phthalocyanine; Zn phthalocyanine-*d*₁₆; Isotopic shift; Form of the modes

INTRODUCTION

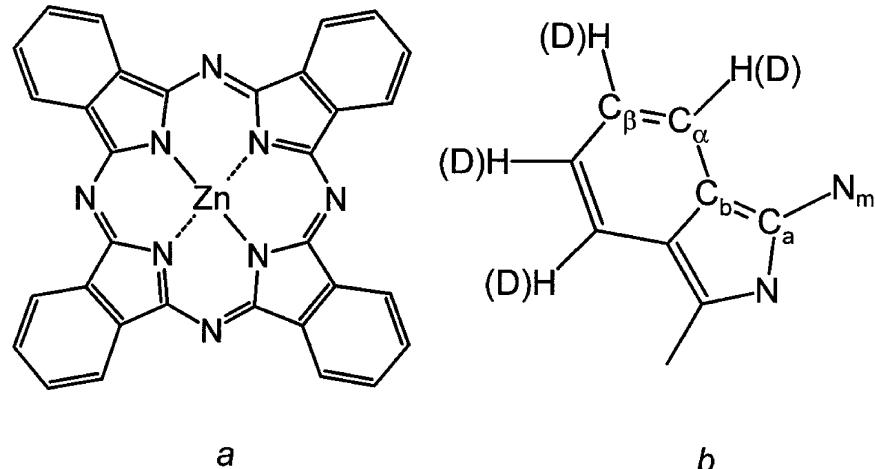
As is well known, phthalocyanine and its analogues find wide application in science and technology. In prospect, one may expect that the compounds of this class will be used in devices functioning at the molecular level. It is possible to monitor the state of chromophores in operating and model molecular systems by means of the methods of vibronic and vibrational spectroscopy. For obtaining complete information in doing so it is necessary to know the form of the normal modes and the special features of molecular dynamics.

We have undertaken a complex, theoretical and experimental, investigation of the effect of isotope substitution (mainly, that of deuteration) on the vibronic and vibrational spectra of this type molecules, with the aim to solve the inverse spectral problem for several fundamental structures, i.e. to determine the valence force fields and, thus, the form of the modes. Earlier the authors (L.L.G. and K.N.S.) successfully solved a similar problem for simpler molecules, viz. porphin¹ and Cu porphin² (see also Ref. 3). With the use of the force fields obtained, into which grounded corrections had been introduced, direct vibrational problems were solved for a large number of porphyrins and metalloporphyrins (see references in Ref. 4).

EXPERIMENTAL

The first step in the direction outlined above was the investigation of tetrabenzoporphin (H₂TBP) and D₂TBP^{5,6}. The transfer of the force field of porphin^{1,3} to the case of H₂TBP (for the benzene rings the force field of phenanthrene⁷ was used) gave directly a positive result — the quasi-line fluorescence spectra of H₂TBP and D₂TBP were quite satisfactorily interpreted without variation of force constants^{5,6}.

Contrary to this, an attempt to analyze in an analogous way the spectra of phthalocyanine has shown the necessity of introduction of essential changes into the force field. This was done on the basis of investigation of the quasi-line fluorescence spectra of tetraazaporphin (H₂TAP) and D₂TAP in combination with normal coordinate analysis⁸. By the regularized least-squares method the force field of the porphin


molecule was corrected for H₂TAP in such a way, that the experimental frequencies corresponded to the calculated ones. By analogy with the case of H₂TBP, it may be expected that the force field obtained will be suitable for the description of vibrational states of phthalocyanine (H₂Pc).

The deuteration of the peripheral CH groups in the phthalocyanine macrocycle became the new step in investigating the effect of isotope substitution. In this short communication we report on the influence of perdeuteration on the IR spectra of Zn phthalocyanine (ZnPc) and compare the experimental data with the normal coordinate analysis results. The chemical structure of the compounds investigated is shown in Fig. 1, as well as the designation of atoms in the ZnPc molecule.

Zn phthalocyanine-*d*₁₆ was synthesized according to Ref. 9 from phthalonitrile-*d*₄. The latter was prepared in 5 steps from *o*-xylene-*d*₄ which, in turn, had been obtained by deuteration of *o*-xylene in D₂SO₄-D₂O at 20°C with the use of a modified procedure of Ref. 10.

Powdered samples of pigments were dispersed in KBr pellets, and their spectra were recorded on a Jasco Model IR-810 spectrophotometer with an instrumental resolution of 3 cm⁻¹.

The IR spectra of the investigated compounds in the 400–1700 cm⁻¹ range are presented in Fig. 2. The comparison of them shows that most of the IR bands change their position on the isotope substitution. In order to

Figure 1. Structural formula of ZnPc (a) and the designation of atoms and sites of deuteration shown for an aza-isoindole fragment of the ZnPc molecule (b).

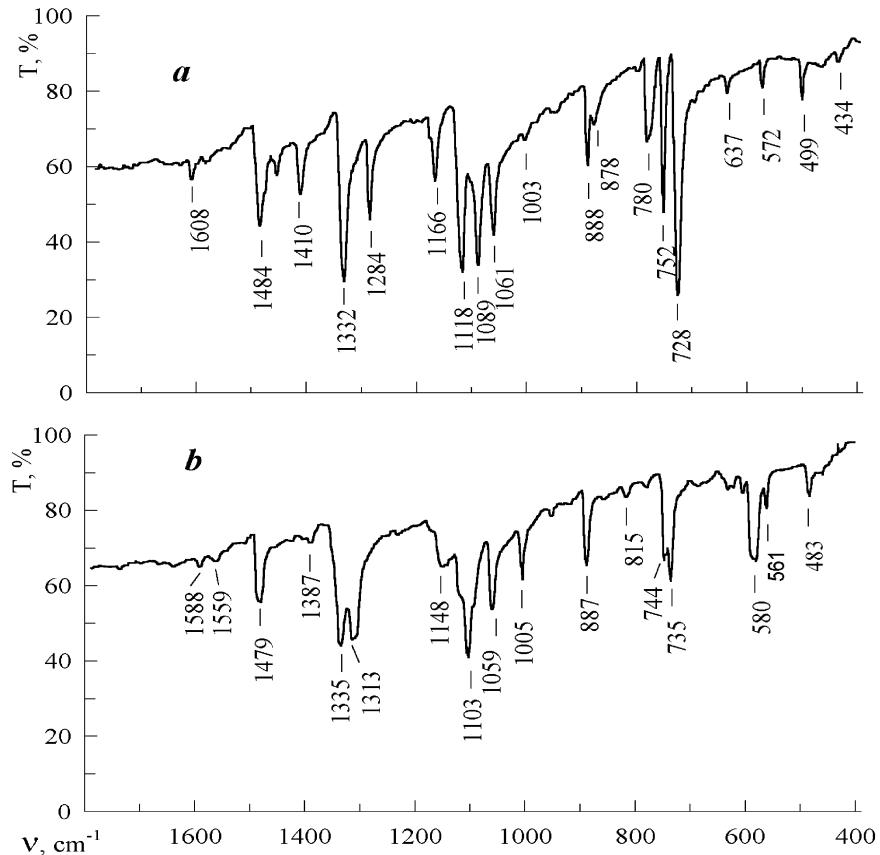


Figure 2. IR spectra of ZnPc (a) and ZnPc-*d*₁₆ (b) in KBr pellets.

correlate the frequencies of perdeuterated and non-deuterated ZnPc, the calculation of the normal modes of the ZnPc and ZnPc-*d*₁₆ molecules was carried out for the 28 in-plane normal vibrations which belong to the E_u symmetry type (irreducible representation) of the D_{4h} point symmetry group. The geometrical parameters were taken from the X-ray data for ZnPc¹¹, and the valence force field was formed from the force constants of H₂TAP⁸, Cu porphyrin², and phenanthrene⁷ with subsequent variation of some of them. The juxtaposition of the theoretical and experimental frequencies of ZnPc and ZnPc-*d*₁₆ is made in Table 1 where the main contributions to the potential energy distribution (PED) of the ZnPc modes are also given.

Table 1. Calculated and Experimental Frequencies of the In-Plane E_u Normal Vibrations of ZnPc (Versus ZnPc-*d*₁₆) and Their Assignment

ZnPc		ZnPc- <i>d</i> ₁₆		ZnPc PED (%)
v _{theor} (cm ⁻¹)	v _{exp} (cm ⁻¹)	v _{theor} (cm ⁻¹)	v _{exp} (cm ⁻¹)	
1619	1608	1586	1588	C _b C _b 28, C _β C _β 20, C _α C _β 14, C _b C _α 8, C _b C _α C _β 8
1606	1582	1576	1559	C _α C _β 52, C _b C _α 24, C _b C _α H 8
1501	1484	1493	1479	C _a N _m 76, C _b C _a N8
1468	1474	1420	—	C _b C _b 14, C _β C _β 14, C _b C _α H 12, C _β C _α H 10
1430	1453	1386	1387	C _b C _α 34, C _α C _β 18, C _α C _β H 8, C _β C _β H 8
1409	1410	1362	1335	C _b C _α 36, C _α C _β 28, C _b C _b 20, C _β C _β 10, C _a N _m 4
1354	1332	1320	1313	C _a C _b 36, C _a N _m 26, C _b C _a N 8
1275	1284	1006	1005	C _a C _b 36, C _a N 14, C _b C _α H 12, C _β C _α H 10, C _a N _m C _a 4
1238	—	1255	1228?	C _a C _b 48, C _a N 10, C _β C _α H 6, C _a N _m 4, C _b C _α 4, C _b C _α H 4
1189	1174	1173	1148	C _a N 26, C _a N _m 24, C _a C _b 16, C _a N _m C _a 4
1157	1166	852	857	C _β C _β H 31, C _α C _β H 30
1130	1118	1102	1103	C _a N 44, C _a NC _a 6
1112	1089	833	815	C _β C _β H 12, C _α C _β 8, C _α C _β H 8, C _β C _α H 4
1071	1061	1068	1059	C _a N 100
1018	1003	813	815	C _β C _β 30, C _α C _β 20, C _b C _α H 8, C _β C _α H 8
903	888	917	887	C _a N _m C _a 20, C _a N _m 8, C _α C _β C _β 8
806	780	757	744	C _b C _b 18, C _a C _b 10, C _b C _α 10, C _b C _α C _β 8, C _β C _β 4, C _α C _β C _β 4
737	752	727	735	C _a N _m C _a 12, C _b C _a N 6, C _a N _m 4, C _b C _α C _β 4, C _b C _a N _m 4, C _α C _β C _β 4
610	637	600	630	C _b C _α C _β 10, C _a N _m 4, ZnN 4, C _a NC _a 4, C _α C _β C _β 4
569	572	560	561	C _α C _β C _β 10, C _b C _b C _α 8, C _a C _b C _α 4, C _b C _α C _β 4
506	499	487	483	C _a C _b C _b 22, C _a C _b C _α 16, C _a N _m C _a 6, C _a C _b 4, C _a N _m 4, C _b C _α 4
282	303	279	—	C _a N _m C _a 12, ZnNC _a 8, C _b C _a N _m 8, N _m C _a N 8
232	258	230	—	ZnN 56, ZnNC _a 14
117	116	111	—	C _b C _a N _m 16, ZnN8, C _a C _b C _α 8, N _m C _a N8, C _a C _b 4

RESULTS AND DISCUSSION

The obtained correspondence of the calculated and experimental frequencies may be considered satisfactory: the average value of |v_{theor} - v_{exp}| from Table 1 amounts to 15 cm⁻¹ (over the 23 observed frequencies), and its maximum value is 27 cm⁻¹ for ZnPc. For ZnPc-*d*₁₆ these values are 12 cm⁻¹

(over the 20 observed frequencies) and 30 cm^{-1} , respectively. It should be noted that in the only published calculation of the E_u vibrations of ZnPc, which we are aware of, for skeletal stretching modes highly overestimated values of the calculated frequencies were obtained (the differences $\nu_{\text{theor}} - \nu_{\text{exp}}$ exceed 100 cm^{-1})¹².

We begin the discussion of the results of frequency assignment with the frequency region about 1600 cm^{-1} . Here two bands, at 1582 and 1608 cm^{-1} , appear in the IR spectrum whose position is characteristic for compounds containing the benzene rings¹³. The shift of these bands to lower frequencies by ca. 20 cm^{-1} on deuteration is in agreement with their assignment to the CC stretching vibrations of the benzene rings. In the case of porphyrins the vibrations of the CC bonds of the methine bridges manifest themselves in this region. The vibrations of the CN bonds of the aza bridges have lower frequencies⁸.

It is seen from Fig. 2 that the 1484 cm^{-1} band practically does not shift in passing to ZnPc- d_{16} which indicates that it belongs to the stretching vibration of the bridge C_aN_m bonds. According to the calculation, vibrations involving CC bonds of the benzene rings must also be active in this region. The bands at 1453 and 1474 cm^{-1} (a shoulder of the 1484 cm^{-1} band), which are sensitive to deuteration, are attributed by us to these vibrations.

The 1410 cm^{-1} band also disappears on deuteration. In the ZnPc- d_{16} spectrum we correlate to it the band at 1335 assuming that the 1332 cm^{-1} band of ZnPc, in accordance with the calculation, shifts to 1313 cm^{-1} . However, one cannot exclude the possibility of correlating frequencies of 1410 and 1313 cm^{-1} implying the rise in the 1332 cm^{-1} frequency by 3 cm^{-1} .

The frequencies of in-plane vibrations with large contributions of the CCH angles fall within the 1000 – 1300 cm^{-1} range. The strong band at 1284 cm^{-1} disappears on deuteration. In accordance with the calculation we correlate it with the 1006 cm^{-1} band of ZnPc- d_{16} . This assignment is in agreement with the interpretation of the IR spectrum of toluene which has a frequency of 1278 cm^{-1} shifting down to 1004 cm^{-1} on deuteration¹³. The shift of the corresponding band of anthracene is somewhat lesser (from 1269 to 1046 cm^{-1})¹³. A complicated band with a maximum at 1166 cm^{-1} is attributed by us to two vibrations. The frequency of one of them, that with the participation of the C_aN bonds, on deuteration is slightly lowered, to 1148 cm^{-1} , while the frequency of the second vibration, which is an analogue of the characteristic vibration of disubstituted derivatives of benzene¹³, falls down to 857 cm^{-1} .

It should be mentioned that we assign the 1003 and 1089 cm^{-1} bands also to modes with considerable contribution of the CCH angles (815 cm^{-1} for ZnPc- d_{16}). Note the similarity in the behaviour of these frequencies to

the data for toluene whose two frequencies, 1031 and 1090 cm⁻¹, are correlated with one frequency of toluene-*d*₈, viz., 826 cm⁻¹¹³.

In the frequency range below 1000 cm⁻¹ the out-of-plane A_{2u} vibrations may also be active. In Ref. 14, on the basis of measurements of the anisotropy of IR absorption of vacuum-deposited films on the KBr substrate, the 726 and 770 cm⁻¹ of CuPc were attributed to out-of-plane modes. Relying on this result and taking into account the deuteration data, we juxtapose the 728 and 774 cm⁻¹ bands of ZnPc with the bands of ZnPc-*d*₁₆ at 580 and 604 cm⁻¹ (or 620 cm⁻¹) and assign them to out-of-plane vibrations with predominant contribution of CH bonds. Besides this, to the out-of-plane modes we attribute also the 878 cm⁻¹ band disappearing on deuteration. It is possible that weak bands at 434, 680, 695, 797, 948, and 955 cm⁻¹ belong to out-of-plane vibrations as well.

Three in plane skeletal vibrations with the calculated frequencies of 737, 806, and 903 cm⁻¹ are associated by us with the bands at 752, 780, and 888 cm⁻¹, respectively. The contribution of the benzene rings is the most sizeable for the second of these modes, in conformity with the larger shift of this frequency on deuteration. The bands at 499, 572, and 637 cm⁻¹ also belong to in-plane skeletal deformation vibrations of the isoindole fragments. For this reason they slightly shift on deuteration. The proposed assignment of these frequencies to in-plane modes is confirmed by the splitting of these bands in passing to H₂Pc¹⁵.

The experimental frequencies in the 100–400 cm⁻¹ region were taken from Ref. 16. The calculation gives three in-plane normal vibrations in this region. The most low-frequency mode of $\nu_{\text{theor}} = 115$ cm⁻¹ is associated by us with the IR band of ZnPc at 116 cm⁻¹. A minor contribution of the metal-nitrogen bonds to the PED of this mode explains its weak dependence on the nature of metal¹⁶. The appearance of the band at 132 cm⁻¹, also slightly sensitive to the nature of metal, is possibly due to the effects of the crystal structure, since it is absent for the β -form of CoPc¹⁷.

The largest PED contribution of the ZnN bond is obtained for the mode of $\nu_{\text{theor}} = 230$ cm⁻¹ which we correlate with the metal-sensitive frequency of 258 cm⁻¹. The value of this frequency is higher than that of the analogous vibration of Zn octaethylporphyrin (202 cm⁻¹)¹⁸. Our calculations show that, for the same force constants of the ZnN bonds, the calculated frequency of this mode for Zn porphyrins is lower than for ZnPc. This indicates that the form of this mode changes due to the presence of the benzene rings.

It is to be noted that metal-sensitive bands are present in different regions of the IR spectrum. For example, depending on the nature of the central metal atom, according to Ref. 15, the maximal change in the frequency about 500 cm⁻¹ amounts to 19 cm⁻¹, for the frequency of 888 cm⁻¹

(ZnPc) – up to 31 cm^{-1} , and for the frequency about 1480 cm^{-1} – up to 40 cm^{-1} . The first two frequencies relate to modes with large PED contributions of the $\text{C}_a\text{N}_m\text{C}_a$ angles and the last one – to vibrations of the C_aN_m bonds. One may conclude that the vibrations of the aza bridges depend on the nature of metal to a greater extent than other modes.

In the case of metalloporphyrins the change-over from zinc complexes to nickel complexes also is accompanied by the increase in the frequencies of vibrations of the bridge bonds C_aC_m by $\sim 40\text{ cm}^{-1}$ ^{3,19}. Besides, a correlation was established between the frequency of the C_aC_m vibration of the A_{2g} symmetry type and the distance from the centre of the molecule to the nitrogen atom of one of the pyrrole rings: on introduction of a larger cation this frequency lowers²⁰. We believe that analogous correlation exists for the E_u vibration of the aza bridges of metallophthalocyanines since its frequency is lower for PdPc (1503 cm^{-1}) than for NiPc (1520 cm^{-1})¹⁵ although the complexing ability of Pd is higher than that of Ni.

At the same time, there are certain differences in the behaviour of metal-sensitive frequencies in the cases of metalloporphyrins and metallophthalocyanines. First, for metalloporphyrins, the frequencies of the modes involving the $\text{C}_a\text{C}_m\text{C}_a$ angles practically do not depend on the nature of metal³, whereas the span of the changes in the frequencies of analogous bridge-bending modes of metallophthalocyanines is only slightly less than for the C_aN_m bonds of the aza bridges. Second, for metal-free porphyrins and their Mg and Zn complexes the frequencies of the stretching vibrations of bridges are approximately the same, and they increase by ~ 20 and $\sim 40\text{ cm}^{-1}$ in going to Cu and Ni complexes^{3,19}; contrary to this, for H₂Pc the corresponding frequency is higher than for ZnPc by 15 cm^{-1} , and it is only by 25 cm^{-1} lower than for NiPc¹⁵. This fact may be explained by the diminution of the central space in the phthalocyanine macrocycle¹¹, as compared to the porphyrin macrocycle (see, e.g., Ref. 3), which, on the introduction of a metal atom having a large covalent radius, brings about the expansion of the molecule at the expense of the lengthening and, hence, weakening of the bridge bonds relative to H₂Pc. This is especially relevant to ZnPc in which case the Zn atom is disposed in the molecular plane¹¹, not aside of it as for porphyrins³. For the same reason, the introduction of metal atoms of lesser size does not lead to the strengthening the C_aN_m bonds to the same extent as in the case of porphyrins.

According to the calculation results, the 1059 cm^{-1} frequency has been assigned by us to the vibration with an overwhelming contribution of the C_aN bonds to the PED (ca. 80%). Its frequency changes only in the limits of 15 cm^{-1} in passing from one metallophthalocyanine to another¹⁵ which indicates that there is a certain influence of metal on the force

constants of these bonds, though to a lesser extent than for the C_aN_m bonds.

A general remark should be made to the material of this work. It is known that the position of the IR bands of phthalocyanines investigated in KBr pellets depends slightly on the crystal modification of the original sample; there are also differences in the intensities of the bands and even in their number. The comparison of our IR spectrum of ZnPc with the literature data^{21,22} shows that our spectrum belongs mainly to the β form. This does not affect essentially the results of the assignment of bands. It is worthy of mentioning that, in principle, our data on the form of the modes, after their substantiation by further studies, will make it possible to analyze the intermolecular interactions in different crystal modifications of metallophthalocyanines and find out the reasons of the frequency changes depending on crystal modification.

CONCLUSIONS

We may conclude that the isotopic shifts of the IR bands of ZnPc on perdeuteration are satisfactorily described by the normal mode calculation performed with the use of the valence force field of Cu porphin^{2,3} which was corrected taking into account the differences between the force fields of porphin^{1,3} and H₂TAP⁸. This gives us hope that the corrected force field will be a good first approximation for the solution of the inverse spectral problem, i.e. the refining of the force field by performing the mathematical procedure of optimization of solutions for a set of isotope-substituted compounds.

ACKNOWLEDGMENT

This work was performed with the financial support of the Belarusian Republican Foundation for Fundamental Research (Grant F98-227).

REFERENCES

1. Gladkov, L.L.; Solovyov, K.N. The Normal Coordinate Analysis of Porphin and its Derivatives Based on the Solution of the Inverse Spectral Problem for Porphin and Cu Porphin. I. A Valence Force Field for In-plane Vibrations of the Porphin Molecule. *Spectrochim. Acta* **1985**, *41A*, 1437–1442.

2. Gladkov, L.L.; Solovyov, K.N. The Normal Coordinate Analysis of Porphin and its Derivatives Based on the Solution of the Inverse Spectral Problem for Porphin and Cu Porphin. II. A Valence Force Field for In-plane Vibrations of the Cu Porphin Molecule. *Spectrochim. Acta* **1985**, *41A*, 1443–1448.
3. Solovyov, K.N.; Gladkov, L.L.; Starukhin, A.S.; Shkirman, S.F. *Spectroscopy of Porphyrins: Vibrational states* (in Russian); Minsk: Nauka i Tekhnika, 1985.
4. Gladkov, L.L.; Solovyov, K.N. On the Applicability of the Valence Force Field of the Copper Porphine Molecule Obtained by Solving the Inverse Spectral Problem for the Description of Isotopic Effects in the Resonance Raman Spectra of Metalloporphyrins. *J. Phys. Chem.* **1990**, *94*, 5195–5196.
5. Shkirman, S.F.; Gladkov, L.L.; Konstantinova, V.K.; Solovyov, K.N. Study of Vibronic Spectra of Tetrabenzoporphin Based on Normal-Coordinate Analysis. *Spectrosc. Lett.* **1998**, *31*, 1749–1760.
6. Shkirman, S.F.; Gladkov, L.L.; Konstantinova, V.K.; Solovyov, K.N. Analysis of Vibrational-Electronic Spectra of Tetrabenzoporphin Based on Normal Mode Calculation (in Russian). *Zh. Prikl. Spektrosk.* **1999**, *66*, 375–382; English translation: *J. Appl. Spectrosc.* **1999**, *66*, 400–409.
7. Altmann, W.; Perkampus, H.-H. Calculation of the Planar Normal Vibrations of Phenanthrene. *J. Mol. Spectrosc.* **1979**, *78*, 156–160.
8. Gladkov, L.L.; Shkirman, S.F.; Konstantinova, V.K.; Solovyov, K.N. Calculation of the Normal Vibrations of the Tetraazaporphin Molecule and Interpretation of its Quasi-Line Spectra (in Russian). *Zh. Prikl. Spektrosk.* **2000**, *67*, 551–556.
9. Bishop, S.M.; Beeby, A.; Parker, A.W.; Foley, M.S.C.; Philips, P. The Preparation and Photophysical Measurements of Perdeutero Zinc Phthalocyanine. *J. Photochem. Photobiol. A: Chem.* **1995**, *90*, 39–44.
10. Grime, D.; Ward, I.M. Assignment of Infrared Absorptions and Rotational Isomerism in Poly(ethylene terephthalate) and Related Compounds. *Trans. Faraday Soc.* **1958**, *54*, 959–971.
11. Scheidt, W.R.; Dow, W.J. Molecular stereochemistry of phthalocyanato zinc (II). *J. Amer. Chem. Soc.* **1977**, *99*, 1101–1104.
12. Palys, B.J.; van den Ham, D.M.W.; Briels, W.; Feil, D. Resonance Raman Spectra of Phthalocyanine Monolayers on Different Supports. A Normal Mode Analysis of Zinc Phthalocyanine by Means of the MNDO Method. *J. Raman Spectrosc.* **1995**, *26*, 63–76.
13. Sverdlov, L.M.; Kovner, M.A.; Krainov, E.P. *Vibrational Spectra of Polyatomic Molecules* (in Russian); Moscow: Nauka, 1970.

14. Meshkova, G.N.; Vartanyan, A.T.; Sidorov, A.N. Absorption Spectra and Association of Phthalocyanines. Sublimated Layers of Phthalocyanine, Cu and Co Phthalocyanines (in Russian). *Opt. i Spektrosk.* **1977**, *43*, 262–267.
15. Kobayashi, T.; Kurokawa, F.; Uyeda, N.; Suito, E. The Metal-Ligand Vibrations in the Infrared Spectra of Various Metal Phthalocyanines. *Spectrochim. Acta* **1970**, *26A*, 1305–1311.
16. Kobayashi, T. The Far Infrared Spectra of Phthalocyanine and its Metal Derivatives. *Spectrochim. Acta* **1970**, *26A*, 1313–1322.
17. Metz, J.; Schneider, O.; Hanack, M. Infrared and Far Infrared Studies of Monomeric and Polymeric Base Adducts of Phthalocyaninato Transition Metal (II) Complexes. *Spectrochim. Acta* **1982**, *38A*, 1265–1273.
18. Bürger, H.; Burczyk, K.; Fuhrhop, J.H. Metallisotopen-Effekt Bei Metalloporphyrin Spektren im Fernen Infrarot. *Tetrahedron* **1971**, *27*, 3257–3261.
19. Kincaid, J.; Urban, M.; Watanabe, T.; Nakamoto, K. Infrared Spectra of Matrix-Isolated Metal Complexes of Octaethylporphine. *J. Phys. Chem.* **1983**, *87*, 3096–3101.
20. Spaulding, L.D.; Chang, C.C.; Ya, N.T.; Felton, R.H. Resonance Raman Spectra of Metallooctaethylporphyrins. A Structural Probe of Metal Displacement. *J. Amer. Chem. Soc.* **1975**, *97*, 2517–2525.
21. Ebert, Jr., A.A.; Gottlieb, H.B. Infrared Spectra of Organic Compounds Exhibiting Polymorphism. *J. Amer. Chem. Soc.* **1952**, *74*, 2806–2810.
22. Sidorov, A.N.; Kotlyar, I.P. Infrared Spectra of Phthalocyanines. I. The Influence of Crystal Structure and Central Metal Atom on the Phthalocyanine Molecule in the Solid State (in Russian). *Opt. i Spectrosk.* **1966**, *11*, 175–184.

Received February 3, 2001

Accepted August 1, 2001